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SUMMARY

The voice is the most direct link we have to others’
minds, allowing us to communicate using a rich vari-
ety of speech cues [1, 2]. This link is particularly crit-
ical early in life as parents draw infants into the struc-
ture of their environment using infant-directed
speech (IDS), a communicative code with unique
pitch and rhythmic characteristics relative to adult-
directed speech (ADS) [3, 4]. To begin breaking into
language, infants must discern subtle statistical dif-
ferences about people and voices in order to direct
their attention toward the most relevant signals.
Here, we uncover a new defining feature of IDS:
mothers significantly alter statistical properties of
vocal timbre when speaking to their infants. Timbre,
the tone color or unique quality of a sound, is a spec-
tral fingerprint that helps us instantly identify and
classify sound sources, such as individual people
and musical instruments [5–7]. We recorded 24
mothers’ naturalistic speech while they interacted
with their infants and with adult experimenters in
their native language. Half of the participants were
English speakers, and half were not. Using a support
vector machine classifier, we found that mothers
consistently shifted their timbre between ADS and
IDS. Importantly, this shift was similar across lan-
guages, suggesting that such alterations of timbre
may be universal. These findings have theoretical im-
plications for understanding how infants tune in to
their local communicative environments. Moreover,
our classification algorithm for identifying infant-
directed timbre has direct translational implications
for speech recognition technology.

RESULTS

Ifmotherssystematically alter their unique timbresignatureswhen

speaking to their infants, we predicted that we could use freely

improvised, naturalistic speech data to discriminate infant-

directed from adult-directed speech. Furthermore, if this system-
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atic shift in timbre production during IDS exists, we expected that

it would manifest similarly across a wide variety of languages.

Twenty-fourmother-infant dyadsparticipated in this study (see

STARMethods).We recordedmothers’ naturalistic speechwhile

they spoke to their infants and to an adult interviewer. During the

recorded session, half of the mothers spoke only English and the

other half spoke only a non-English language (the language they

predominantly used when speaking to their child at home). For

each participant, we extracted 20 short utterances from each

condition (IDS, ADS) and computed a single, time-averaged

MFCC vector (i.e., a concise summary statistic representing the

signature tone ‘‘color’’ of that mother’s voice; see Figure 1 and

STAR Methods) from each utterance. This measure—a limited

set of time-averaged values that concisely describe a sound’s

unique spectral properties [8, 9]—has been shown to represent

human timbre perception quite well [7]. As an initial validation of

our method, we first confirmed that support-vector machine

(SVM) classification is sensitive enough to replicate previous

work distinguishing individual mothers [10, 11] by performing

the classification on these MFCC vectors across subjects (see

STAR Methods). Then, to test our primary question of interest,

we performed a similar SVM classification on these vectors to

distinguish IDS fromADS.Our use of MFCC as a global summary

measure of vocal signature across varied, naturalistic speech

(see STAR Methods) represents a new approach to discrimi-

nating communicative modes in real-life contexts.

Classification of Infant- versus Adult-Directed Speech
Using a support-vector machine classifier (SVM-RBF, see STAR

Methods), we were able to distinguish utterances of infant-

directed from adult-directed speech significantly above chance

using the MFCC, here used as a summary statistical feature vec-

tor that represents the overall timbre fingerprint of someone’s

voice (see STAR Methods). Our classification analysis discrimi-

nated IDS from ADS for both English speech (Figure 2; two-

tailed, one-sample t test, t(11) = 6.85, p < 0.0001) and non-En-

glish speech (t(11) = 4.84, p < 0.001). These results indicate

that timbre shifts across communicative modes are highly

consistent across mothers.

Classification of Infant- versus Adult-Directed Speech
Generalizes across Languages
In a cross-language decoding analysis, we also found that the

classifier trained to distinguish English IDS from ADS could
ier Ltd.
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Figure 1. MFCC Feature Vectors from All Utterances for One Repre-

sentative Participant

Each vector (dashed lines) represents the time-averaged set of Mel-frequency

cepstral coefficients for a single utterance of either adult-directed speech

(ADS, shown in blue) or infant-directed speech (IDS, shown in pink). Each bold

line represents the average MFCC vector across all 20 utterances for a given

condition. Error bars on the averaged vectors represent ±SEM across 20 ut-

terances. Figure S1 depicts average MFCC vectors for each of the 12 English-

speaking participants; the vectors displayed in this figure come from s12.

Figure 2. Accuracy Rates for Classifying Mothers’ IDS versus ADS

using MFCC Vectors

The first two bars indicate results from training and testing the classifier on

English (first bar) and on all other languages (second bar). The third bar results

from training the classifier on English data and testing on non-English data (and

vice versa for the fourth bar). Chance (dashed line) is 50%. N = 12. Classifi-

cation performance is represented as mean percent correct and ±SEM across

cross-validation folds (leave-one-subject-out). ***p < 0.001.
discriminate these two modes of speech significantly above

chance when tested instead on non-English data (Figure 2,

t(11) = 6.16, p < 0.0001). Conversely, a classifier trained to distin-

guish non-English IDS fromADS could also successfully discrim-

inate English data (t(11) = 5.84, p < 0.001). Thus, the timbral

transformation used (perhaps automatically) by English

speakers when switching from ADS to IDS generalizes robustly

to other languages. See STAR Methods for the full list of lan-

guages tested.

Classification of Infant- versus Adult-Directed Speech
Cannot Be Fully Explained by Differences in Pitch (F0) or
Formants (F1, F2)
We performed a control analysis to rule out the possibility that

our ability to distinguish IDS from ADS was based on differences

in pitch that were somehow recoverable in theMFCC feature set.

To do this, we regressed out F0 (over time) from each of the 12

MFCC time vectors before computing the single time-averaged

vector of MFCC coefficients for each utterance and performing

classification based on those time-averaged vectors (see

STAR Methods). After removing the dynamic effects of F0, we

found that classification between ADS and IDS (using the same

algorithm as in previous analyses, SVM-RBF) was still signifi-

cantly above chance for English data (Figure 3A, second bar;

two-tailed, one-sample t test, t(11) = 4.45, p < 0.001), non-En-

glish data (Figure 3B, second bar; t(11) = 4.61, p < 0.001), training

on English and testing on non-English data (Figure 3C, second

bar; t(11) = 5.54, p < 0.001), and training on non-English and

testing on English data (Figure 3D, second bar; t(11) = 5.36,

p < 0.001). Thus, even in the absence of pitch differences, timbre

information alone enabled robust discrimination of ADS and IDS.
In a second analysis, we computed the F1 and F2 contours

from each utterance and regressed out each of these vectors

(in addition to F0) from eachMFCC time vector before computing

the single time-averaged vector of MFCC coefficients for each

utterance. We chose F1 and F2 because they have been identi-

fied in previous research as properties of speech that are shifted

between IDS andADS [12]. After removing the dynamic effects of

F0 and the first two formants, we found that classification was

still significantly above chance for English data (Figure 3A, third

bar; two-tailed, one-sample t test, t(11) = 3.88, p < 0.01), non-En-

glish data (Figure 3B, third bar; t(11) = 4.85, p < 0.001), training on

English and testing on non-English data (Figure 3C, third bar;

t(11) = 8.31, p < 0.0001), and training on non-English and testing

on English data (Figure 3D, third bar; t(11) = 3.37, p < 0.01). Thus,

even after removing the dynamic effects of pitch and the first two

formants, the remaining timbre information present in MFCCs

enabled robust discrimination of ADS and IDS.

Classification of IDS versus ADS Data Cannot Be Fully
Explained by Differences in Background Noise
We performed another control analysis to rule out the possibility

that our ability to distinguish between IDS and ADS was due to

differences between the noise properties of the microphone or

room across different conditions. We were able to classify ADS

versus IDS using silence alone for English speakers (Figure 4A,

yellow bar; two-tailed, one-sample t test, t(11) = 3.26, p < 0.01)

and for non-English speakers (Figure 4B, yellow bar; t(11) =

2.33, p < 0.05). This could result from slight shifts in microphone

position when mothers were oriented toward the adult experi-

menter versus their infant. But importantly, classification of

ADS versus IDS was significantly better for real speech than
Current Biology 27, 3162–3167, October 23, 2017 3163



Figure 3. Accuracy Rates for Classifying IDS versus ADS Based on

Timbre, after Controlling for Pitch and Formants

The first (darkest blue) bars indicate results for MFCC vectors derived from

original speech, the second bars indicate results from speech with F0 re-

gressed out, and the third bars indicate results from speechwith F0, F1, and F2

regressed out. Bars corresponding to ‘‘original speech’’ are derived from only

the segments of each utterance in which an F0 value was obtained, for direct

comparison with the regression results (see STAR Methods). Chance (dashed

line) is 50%. N = 12. Classification performance is represented as mean

percent correct and ±SEM across cross-validation folds (leave-one-subject-

out). **p < 0.01, ***p < 0.001.

Figure 4. Accuracy Rates for Classifying IDS versus ADS Based on

Vocal Timbre versus Background Noise

All ‘‘speech’’ (blue) bars are duplicated exactly from Figure 2 and appear again

here for visual comparison. ‘‘Silence’’ (yellow) bars are derived from cropped

segments containing no sounds except for ambient noise from recordings of

English speakers and non-English speakers. Chance (dashed line) is 50%. N =

12. Classification performance is represented as mean percent correct

and ±SEM across cross-validation folds (leave-one-subject-out). Figure S2

displays accuracy rates for classifying individual speakers based on speech

versus background noise. *p < 0.05, ***p < 0.001.
silences alone for both English (Figure 4A; two-tailed, paired-

samples t test, t(11) = 2.92, p < 0.02) and non-English (Figure 4B;

t(11) = 2.31, p < 0.05) data. Furthermore, both of our cross-lan-

guage analyses failed completely when we used silence alone

(train on English silence, test on non-English silence: t(11) =

�1.38, p = 0.19, see Figure 4C, yellow bar; train on non-English

silence, test on English silence: t(11) = -.04, p = 0.97, see Fig-

ure 4D, yellow bar). And once again, cross-language classifica-

tion of ADS versus IDS was significantly better when we trained

on real English speech and tested on non-English speech than

when we trained and tested on silence alone from those respec-

tive groups (Figure 4C; t(11) = 6.46, p < 0.0001) andwas also bet-

ter when we trained on non-English speech and tested on En-

glish speech than when we trained and tested on silence alone

(Figure 4D; t(11) = 2.59, p < 0.05). Collectively, these results

demonstrate that differences in background noise across ADS
3164 Current Biology 27, 3162–3167, October 23, 2017
and IDS recordings cannot fully account for our ability to classify

those two modes of speech.

DISCUSSION

We show for the first time that infant-directed speech is defined

by robust shifts in overall timbre that help differentiate it from

adult-directed speech as a distinct communicative mode across

multiple languages. This spectral dimension of speakers’ voices

differs reliably between the two contexts, i.e., when a mother is

speaking to her infant versus engaging in dialog with an adult.

Our findings generalize across a broad set of languages, much

as pitch characteristics of IDS manifest similarly in several lan-

guages [13]. This research emphasizes and isolates the signifi-

cant role of timbre (a relatively high-level feature of sounds

[14]) in communicative code switching, adding a novel dimen-

sion to the well-known adjustments that speakers use in IDS,



such as higher pitch, more varied pitch, longer pauses, shorter

utterances, and more repetition [3, 4].

Our study complements research showing that adult speakers

acoustically exaggerate the formant frequencies of their speech

when speaking to infants to maximize differences between

vowels [12, 15]. Our results cannot be explained by differences

in pitch (F0) or in the first two formants (F1 and F2) between

ADS and IDS; even after regressing out these features over

time from the MFCCs, significant timbre differences remain

that allow for robust classification of these two modes of speech

(see Results and Figure 3). This suggests that our timbre effects

reflect a shift in the global shape of the spectrum beyond these

individual frequency bands. Furthermore, the shifts we report

generalize across a broader set of languages than have been

tested in previous work. Even after the removal of pitch and for-

mants, our ADS/IDS classification model transfers from English

speech to speech sampled from a diverse set of nine other lan-

guages (Figures 3C and 3D, third bars).

Timbre enables us to discriminate, recognize, and enjoy a

rich variety of sounds [5, 16], from friends’ voices and animal

calls to musical textures. A characteristic of the speech spec-

trum that depends on the resonant properties of the larynx,

vocal tract, and articulators, vocal timbre varies widely across

people (see Audio S1, S2, S3, and S4). Because MFCC has

been shown to provide a strong model for perceptual timbre

space as a whole [7], we focused here on this summary statis-

tical measure of the spectral shape of a voice as a proxy for

timbre. However, timbre is a complex property that requires

the neural integration of multiple spectral and temporal features

[17], most notably spectral centroid (the weighted average fre-

quency of a signal’s spectrum, which strongly relates to our

MFCC measure and influences perceived brightness [18]),

attack time, and temporal modulation (e.g., vibrato) [6]. Future

work should explore how these dimensions of timbre might

interact in IDS in order to support infants’ learning of relevant

units of speech.

Compared to most prosodic features of speech (e.g., pitch

range, rhythm), which aremore ‘‘horizontal’’ and unfold overmul-

tiple syllables and even sentences of data, the time-averaged

summary statistic we have measured represents a more ‘‘verti-

cal’’ dimension of sound. This spectral fingerprint is detectable

and quantifiable with very little data, consistent with listeners’

abilities to identify individual speakers even from single, mono-

syllabic words [19] and to estimate rich information from very

brief clips of popular music [20]. These examples are too short

to contain pitch variation but do include information about the re-

lationships between harmonics that are linked to perceptual as-

pects of voice quality. Such cues include amplitude differences

between harmonics, harmonics-to-noise ratio, and both jitter

and shimmer (which relate to roughness or hoarseness [21]). In-

fants’ abilities to classify [22] and remember [23] timbre suggest

that it could be partly responsible for their early ability to recog-

nize IDS [24] and their own caregivers’ voices [25]. Both identifi-

cation processes are likely to provide relevant input for further

learning about the ambient language and the social environment.

Because timbre contributes greatly to the rapid identification of

sound sources and the grouping of auditory objects [5], it likely

serves as an early and important cue to be associatively bound

to other sensory features (e.g., a sibling with her voice, a dog
with its bark). The developmental time course of this process in-

vites future investigation.

The timbre shifts we report in IDS are likely part of a broadly

adaptive mechanism that quickly draws infants’ attention [26]

to the statistical structure of their relevant auditory environment,

starting very soon after birth [24], and helps them to segment

words [27], learn the meanings of novel words [28], and segment

speech into units [29]. IDS may serve as a vehicle for the expres-

sion of emotion [30], in part due to its ‘‘musical’’ characteristics

[31, 32] and its interaction with a mother’s emotional state [33].

One study [34] reported differences in several timbre-related

acoustic features between infant-directed and adult-directed

singing in English-speaking mothers, but it is unclear whether

these differences are due to performance-related aspects of

vocalization (i.e., having someone to interact with or not, which

can affect speech behavior through non-verbal feedback [35])

or code switching between adult and child audiences. Because

some timbre features have been shown to influence emotional

ratings of speech prosody [36] and because affect is thought

to mediate the learning benefits of IDS [33], future work might

ask how the observed differences between IDS and ADS relate

to mothers’ tendencies to smile, gesture, or provide other

emotional cues during learning.

Our findings have the potential to stimulate broad research on

features of language use in a variety of communicative contexts.

Although timbre’s role in music has been widely studied [16], its

importance for speech—and in particular, communicative

signaling—is still quite poorly understood. However, timbre

holds great promise for helping us to understand and quantify

the frequent register shifts that are important for flexible commu-

nication across a wide variety of situations. For instance, per-

formers often manipulate their timbre for emotional or comic ef-

fect, and listeners are sensitive to even mild affective changes

signaled by these timbral shifts [37]. Future studies could expand

existing literature on audience design [38–41] and code switch-

ing [42, 43] by exploring how speakers alter their timbre, or other

vocal summary statistics, to flexibly meet the demands of a va-

riety of audiences, such as friends, intimate partners, superiors,

students, or political constituents.

Understanding how caregivers naturally alter their vocal

timbre to accommodate children’s unique communicative needs

could have wide-ranging impact, from improving speech recog-

nition software to improving education. For instance, our use of

summary statistics could enable speech recognition algorithms

to quickly and automatically identify infant-directed speech

(and in the future, perhaps a diverse range of speech modes)

from just a few seconds of data. This would support ongoing ef-

forts to develop software that provides summary measures of

natural speech in infants’ and toddlers’ daily lives through auto-

matic vocalization analysis [44, 45]. Moreover, software de-

signed to improve language or communication skills [46] could

enhance children’s engagement by adjusting the vocal timbre

of virtual speakers or teaching agents to match the variation

inherent in the voices of their own caregivers. Finally, this imple-

mentation of summary statistics could improve the efficiency of

emerging sensory substitution technologies that cue acoustic

properties of speech through other modalities [47, 48]. The sta-

tistics of timbre in different communicative modes have the po-

tential to enrich our understanding of how infants tune in to
Current Biology 27, 3162–3167, October 23, 2017 3165



important signals and people in their lives and to inform efforts to

support children’s language learning.

STAR+METHODS

Detailed methods are provided in the online version of this paper
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Software and Algorithms

MATLAB R2016A MathWorks RRID: SCR_001622

HTK MFCC toolbox [9, 49] http://www.mathworks.com/matlabcentral/fileexchange/32849-htk-mfcc-matlab

LibSVM [50] https://www.csie.ntu.edu.tw/�cjlin/libsvm/

Praat [51] http://www.fon.hum.uva.nl/praat/
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources should be directed to and will be fulfilled by the Lead Contact, Elise Piazza (elise.

piazza@gmail.com).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Twenty-four mother-infant dyads participated in three naturalistic activities (see General Procedure), the order of which was counter-

balanced across participants. Infants were 7-12 months old. Informed consent was obtained from all participating mothers, and

approval of the study was obtained from the Princeton University Institutional Review Board. Participants were given no information

about the experimental hypotheses; that is, theywere told that wewere broadly interested in ‘‘howmothers interact with their infants’’

and were not aware that we were measuring differences between the acoustic properties of their speech across the conditions. We

chose to test only mothers to keep overall pitch range fairly consistent across participants but would expect these results to gener-

alize to fathers as well, which could be explored in future studies.

Twelve of the mother-infant dyads were English speakers. To investigate the possibility that timbral differences between ADS and

IDS generalize across languages, we recorded a second group of 12 mothers who speak to their infants using a language other than

English at least 50%of the time.We included awide variety of languages: Spanish (N = 1), Russian (N = 1), Polish (N = 1), German (N =

2), Hungarian (N = 1), French (N = 1), Hebrew (N = 2), Mandarin (N = 2), Cantonese (N = 1). All families were recruited from the central

New Jersey area.

METHOD DETAILS

Equipment
Speech data were recorded continuously using an Apple iPhone and a Miracle Sound Deluxe Lavalier lapel microphone attached to

each mother’s shirt. Due to microphone failure, three participants were recorded with a back-up Blue Snowball USB microphone;

recording quality did not differ between microphones.

General Procedure
In the adult-directed speech (ADS) condition, mothers were interviewed by an adult experimenter about the child’s typical daily

routine, feeding and sleeping habits, personality, and amount of time spent with various adults and children in the child’s life. In

the two infant-directed speech (IDS) conditions, mothers were instructed to interact freely with their infants, as they naturally would

at home, by playing with a constrained set of animal toys and reading from a set of age-appropriate board books, respectively. Each

condition lasted approximately 5 min. See Table S1 for example utterances from both conditions.

All procedures were identical for the English-speaking and non-English-speaking mothers, except that non-English-speaking

mothers were asked to speak only in their non-English language during all experimental conditions (adult interview, reading, and

play). In the interview condition, the experimenter asked the questions in English, but the mother was asked to respond in her

non-English language, and shewas told that a native speaker of her non-English languagewould later take notes from the recordings.

We chose this method (instead of asking the participants to respond to a series of written questions in the appropriate language) to

approximate a naturalistic interaction (via gestures and eye contact) as closely as possible.

QUANTIFICATION AND STATISTICAL ANALYSIS

Data Pre-processing
Using Adobe Audition, we extracted 20, two-second phrases from each condition (ADS, IDS) for each mother. Phrases were chosen

to represent a wide range of semantic and syntactic content; see Table S1 for example phrases. Data were manually inspected to
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ensure that they did not include any non-mother vocalizations or other extraneous sounds (e.g., blocks being thrown). After excluding

these irrelevant sounds, there were typically only 20-30 utterances to choose from, and we simply chose the first 20 from each

mother.

Timbre Analysis
To quantify eachmother’s timbre signature, we usedMel-frequency cepstral coefficients (MFCC), a measure of timbre used for auto-

matic recognition of individual speakers [10, 11], phonemes [52] and words [9], and musical genres [8, 53]. The MFCC is a feature set

that succinctly describes the shape of the short-term speech spectrum using a small vector of weights. The weights represent the

coefficients of the discrete cosine transform of the Mel spectrum, which is designed to realistically approximate the human auditory

system’s response. In our analysis, the MFCC serves as a time-averaged summary statistic that describes the global signature of a

person’s voice over time. For each phrase, we first computed the MFCC in each 25-ms time window to yield a coefficient x time ma-

trix. MFCCs were computed using 25-ms overlapping windows, each 10 ms apart. Finally, we computed a single, time-averaged

vector, consisting of 12 MFCC coefficients, across the entire duration of the phrase (Figure 1). Figure S1 shows the average ADS

and IDS vectors across all 20 phrases for each English-speaking participant. The MFCC features were extracted according to

[49] and [9], as implemented in the HTK MFCC analysis package in MATLAB R2016A, using the following default settings: 25-ms

overlapping windows, 10-ms shift between windows, pre-emphasis coefficient = 0.97, frequency range = 300 to 3700 Hz, 20 filter-

bank channels, 13 cepstral coefficients, cepstral sine lifter parameter = 22, hamming window.

Classification
Prior work suggests that timbre as a feature of natural speech is consistent within individuals and distinct between individuals [19],

i.e., that timbral signatures possess enough information to distinguish individual mothers from one another. As an initial validation of

our method, we first confirmed that support-vector machine (SVM) classification is sensitive enough to replicate previous work dis-

tinguishing individual mothers [10, 11] by performing the classification on theseMFCC vectors across subjects (see Figure S2). Then,

to test our primary question of interest, we performed a similar SVM classification on these vectors to distinguish IDS from ADS.

To this end, we used a support vector machine classifier with radial basis function kernel (SVM-RBF) (LibSVM implementation [50],)

to predict whether utterances belong to the IDS or ADS communicative modes based on MFCC features extracted from natural

speech. We employed a standard leave-one-subject-out (LOSO) 12-fold cross-validation, where for each cross-validation fold we

trained our classifier to distinguish between IDS and ADS using the data from 11 subjects and then tested how well it generalized

to the left-out (twelfth) subject. We note that this is a more stringent test for our classifier compared to using training data from

each subject, because in our case the classifier is oblivious to idiosyncrasies of the left-out subject’s speech when building a model

to discriminate between IDS and ADS.

Additionally, within each LOSO cross-validation fold, we also performed a log-space grid search in the (2�14, 214) range on a

randomly selected held-out subset of one quarter of the training data (25% x 91.7%= 22.9%of the original data) to select the optimal

classifier parameters (C, Gamma). After selecting the optimal cross-validated parameters for that particular fold, we re-trained our

classifier on the entire fold’s training set (11 subjects) and tested how well it generalized to the left-out (twelfth) subject from the orig-

inal data. We repeated this procedure 12 times, iterating over each individual subject for testing (e.g., the first subject is held out for

fold #1 testing, the second subject is held out for fold #2 testing, etc.).

We performed the same analysis described above (classify IDS versus ADS) on a second group of mothers who spoke a language

other than English during the experimental session. In addition, to test the generalizability of the timbre transformation between ADS

and IDS across languages, we performed cross-language classification. Specifically, we first trained the classifier to distinguish be-

tween IDS and ADS using data from the English participants only and tested it on data from the non-English cohort. Finally, we per-

formed the reverse analysis, where the classifier was trained on non-English data and was used to predict IDS versus ADS in the

English participant cohort. SVM classification results (mean percent correct and ± SEM across cross-validation folds) are shown

in Figure 2.

Pitch and Formant Control Analyses
We performed a control analysis to rule out the possibility that our ability to distinguish IDS from ADS was based on differences in

pitch that were somehow recoverable in the MFCC feature set. For every utterance in our dataset, we used Praat [51] to extract a

vector corresponding to the entire F0 contour. For time points in which no F0 value was estimated (i.e., non-pitched speech sounds),

we removed these samples from the F0 vector and also removed the corresponding time bins from the MFCC matrix (coefficients x

times; see Timbre Analysis). This temporal alignment of the MFCC matrices and F0 vectors allowed us to regress out the latter from

the former. Classification performance for these time-restricted MFCCmatrices, before regressing anything out, is shown in Figure 3

(first bars). Next, we regressed out F0 (over time) from each of the 12MFCC time vectors before computing the single time-averaged

vector of MFCC coefficients for each utterance and performing SVM classification between ADS and IDS based on these residual

time-averaged vectors (Figure 3, second bars).

We performed a very similar analysis to additionally control for the impact of the first two formants (F1 and F2) on our classification

of IDS and ADS. Specifically, for each utterance, we used Praat [51] to extract two vectors corresponding to F1 and F2; these vectors

represented the same time points as the F0 vector described above to ensure temporal alignment for the purposes of regression. We

then regressed out F0, F1, and F2 (over time) from each of the 12 MFCC time vectors before computing the single time-averaged
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vector ofMFCCcoefficients and performing classification between ADS and IDS based on these residual time-averaged vectors (Fig-

ure 3, third bars).

Background Noise Control Analysis
We performed a control analysis to rule out the possibility that our ability to distinguish between IDS and ADS was due to differences

between the noise properties of the microphone or room across different conditions (Figure 4). Here, instead of utterances, we ex-

tracted 20 segments of silence (which included only ambient, static background noise and no vocalizations, breathing, or other dy-

namic sounds) from the ADS and IDS recordings of each participant, of comparable length to the original speech utterances (1-2 s).

We then performed identical analyses to those described above for speech data (i.e., analyzing theMFCCof each segment of silence,

performing cross-validated SVM classification to discriminate IDS from ADS recordings).

Classification of IDS versus ADS Cannot Be Explained by Differences between Read and Spontaneous Speech
We conducted a control analysis to ensure that known prosodic differences between read and spontaneous speech [54] could not

account for our ability to distinguish IDS fromADSdata. Specifically, for each of the 12 English-speakingmothers, we replaced all IDS

utterances that corresponded to the ‘‘book’’ (reading) condition with new utterances from the same mother’s recording that corre-

sponded to the ‘‘play’’ condition only. Thus, all 20 utterances from both IDS and ADS now represented only spontaneous speech.

Resulting classification remained significantly above chance (two-tailed, one-sample t test, t(11) = 9.81, p < 0.0001), indicating

that potential differences between spontaneous and read speech could not account for our results.

Classification of Individual Speakers
To confirm that our method is sufficiently sensitive to distinguish between different participants, as in previous research [10, 11], we

used a similar classification technique as the one used to compare IDS to ADS. More specifically, we employed a standard ‘‘leave-

two-utterances-out’’ 10-fold cross-validation procedure for testing, where for each fold we left out 10% of the utterances from each

condition and each subject (e.g., two utterances each from IDS and ADS per subject) and trained the classifier on the remaining 90%

of the data, before testing on the left-out 10%.Within each fold, we also performed a log-space grid search in the (2�14, 214) range on

a held-out subset of one quarter of the training data (25% x 90% = 22.5% of the original data) to select the optimal classifier param-

eters (C, Gamma). After selecting the optimal cross-validated parameters for that particular fold, we re-trained our classifier on the

entire training set (90% of original data) and tested how well it generalized to the left-out 10% of the original data. We repeated this

procedure 10 times, iterating over non-overlapping subsets of held-out data for testing (e.g., the first two utterances from IDS and

ADS are held out for fold #1 testing, the next two utterances are held out for fold #2 testing, etc.).

Using this procedure, we were able to reliably distinguish between individual mothers significantly above chance based onMFCCs

from English speech data (Figure S2A, blue bar; two-tailed, one-sample t test, t(11) = 23.26, p < 0.0001) and from non-English speech

data (Figure S2B, blue bar; t(11) = 22.22, p < 0.0001).

We also performed another control analysis based on background noise (similar to the one above) to rule out the possibility that our

ability to distinguish between different individuals was due to differences between the noise properties of the microphone or room

across different days. We found that we could classify individual mothers above chance in both the English-speaking group (Fig-

ure S2A, yellow bar; t(11) = 19.42, p < 0.0001) and the non-English-speaking group (Figure S2B, yellow bar; t(11) = 26.78, p <

0.0001) based on silences in the recordings alone. This is not entirely surprising because although we maintained a consistent dis-

tance (approximately 12 inches) from the mouth to microphone across mothers, the background noise conditions of the room may

have changed slightly beyond our control across days (e.g., due to differences in the settings of the heating unit). Importantly, how-

ever, discrimination of individual speakerswas significantly better for real speech than silence segments, for both English (Figure S2A;

two-tailed, paired samples t test, t(11) = 4.52, p < 0.001) and non-English data (Figure S2B; t(11) = 3.45, p < 0.01).

DATA AND SOFTWARE AVAILABILITY

Interested readers are encouraged to contact the Lead Contact for the availability of data. The MATLAB-based MFCC routines can

be found at: http://www.mathworks.com/matlabcentral/fileexchange/32849-htk-mfcc-matlab.
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Figure S1. Average MFCC feature vectors across all utterances for each English-speaking participant; related to 
Figure 1. Each plot represents data from one participant’s adult-directed and infant-directed speech. N = 12. Error 
bars represent ± SEM across 20 utterances. 
 
 



	

 
Figure S2. Accuracy rates for classifying individual subjects based on vocal timbre vs. background noise; related to 
Figure 4 and STAR Methods. “Silence” (yellow) bars are derived from cropped segments containing no sounds 
except for ambient recording noise. Chance (dashed line) is 1/N (8.33%). N = 12. Classification performance is 
represented as mean percent correct and ± SEM across cross-validation folds. **p < .01, ***p <  .001. 
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	



	

 
 
Table S1. Sample utterances of English speech data used in analyses; related to STAR Methods. Each mother 
contributed 2-3 utterances.  
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